Thermochimica Acta, 11 (1975) 5-16
:©© Elsevier Scientific Publishing Company. Amsterdam — Printed in Belgium

DERIVATION OF KINETIC CONSTANTS OF SIMPLE REACTIONS
BY MEANS OF ADIABATIC REACTION CALORIMETRY

W. FRANKVOORT AND W. R. DAMMERS
Laboratorium toor Chemische Technologie, Unicersity of Amsterdam (The Netherlands)
(Received 12 September 1974)

ABSTRACT

The present paper is concerned with experimental techniques for conducting
accurate temperature-time measurements in a semi-adiabatic reaction calorimeter.
In addition, mathematical methods are presented which make it possible to derive
reliable values for the activation energy and the frequency factor from the observed
temperature-time relation.

1 INTRODUCTION

In a previous paper'! we discussed a simple method to obtain the activation
energy E and frequency factor Z of chemical reactions from an analysis of the
temperature-time curve observed in adiabatic batch experiments. The method in
question applies to cases in which the reaction rate can be represented by an expression
of the type

U(, T)=Zc"exp (— E) 1
T
where T, = E
R

In perfectly adiabatic systems the rate of temperature change then is given by the
non-linear differential equation

d7 T,
& —TY _2a
P Z(T,—T) exp( ) (93]

satisfying the initial and final corditions

t=0; c=Co; T=T,

0 (3a)

‘t=00; c=0; T=T,=Ty+—=c¢g
¢
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while Z, is a modified frequency factor:

z.=z(°—")’-!=z( o )M @3b)
0 T.—T,

=

Equation (2) can be transformed into an Arrhenius-type relation

Ink,,=lnd—T—-nIn(Tm—T)=an,—£ (4a)
d: T
ar
where k, = ﬁ—: (4b)
(T.—T)

is a pseudo reaction rate constant. From the linear relation between In &, and 1/7, 3
the kinetic constants Z, and 7, can be evaluated. A typical example is presented in
Fig. 3 of our previous paper’, relating to the homogeneous decomposition of hydrogen
peroxide in acid solution®. The modified Arrhenius plot shown in this graph is based .
on measurements conducted in a simple Dewar calorimeter3-*.

Apart from the restrictive assumptions introduced in the derivation of the
differential eqn (2), the applicability of the above method largely depends on the
availability of a reliable value for the maximum adiabatic reaction temperature 7,
and on the possibility of deriving accurate d7/ds values from the experimental 7, 2 -
curve. The effect of 7, on the shape of the medified Arrhenius plot is clearly illustrated -
in Fig. 1, where the straight line represents the relation between In A, and 1/7 for a
first-order reaction (n = 1) with 7, =9000 K and Z, =5.0x 10" " sec™ '. With these :
values of n, T, and Z,, and with 7 = 300 K, we can calculate from egn (2) a series -
of d7/dr, T values to simulate a set of experimental data. Taking these d7/d¢, T values,
but using T, values which differ slightly from 300 K, the values of Ia k; calculated
from eqn (4b) are found to deviate considerably from the straight line. In Fig. 1 the
upper and lower curve represent the variation of In k; with 1/7 for 7_,=299.8 and
300.2 K, respectively. Naturally, a linear fit of these curves in the temperature range
between 280 and 298.5 K would lead to erroneous values for the kinetic constants:

To (K) T, (K) Z; (sec™ ) o

299.8 9771.3 7.52x 102 5x10°3
500.0 9000.0 5.00x 10! —
3002 8365.8 5.37x10*%° 4x10-3

This example indicates that the uncertainty in 7,,—and, consequently, in the
temperature measurements—should preferably be less than 0.01 K in order to obtain
satisfactory results from the modified Arrhenius plot. The same conclusion is reached
with regard to the calculation of d7/dr values. The subsequent sections are therefore
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Fig. 1. The effect of T on the shape of the modified Arrhenius plot (upper curve: 7, =299.8 K ;
middle curve: T4, = 300.0 K; lower curve: T, = 300.2 K).

mainly concerned with experimental means to improve the accuracy of the temperature
measurements and with mathematical techniques to derive reliable values of 7 and
Z, from the observed T, r curve. In addition, two different methods are suggested to
obtain accurate results from essentially non-adiabatic measurements.

2 EXPERIMENTAL

2.1 The model reaction

The liquid-phase model reaction used to explore the properties of the reaction
calorimeter is the acid-catalyzed conversion cf methyloxirane (propylcne oxide) into
propanediol (propylene glycol):

CH3 CH3
| H* |
HON +H,0 —> CHOH ®)
| jo !
Hz(/ CH,OH

This moderately exothermic hydrolysis reaction (AH = —89.18 kJ mol~ ! (refs. 5-8))
has been studied by several investigators®~'!. Values for the activation energy and
the frequency factor have been reported by Long and Pritchard!?~** (for aqueous
solutions) and by Furusawa et al.!> (for mixtures of water and methanol).



In a wide range of conditions with regard to the acidity and the water content
of the reacting mixture, the reaction rate is found to be of the first order in methyl-
oxirane (MO), proportional to the H* concentration and independent of the H,O
concentration:

U= —d(?°’=kl<M0)=kz(H*)(M0); ky = ka(H™)
t
©)
T. T. -
k; =Z,ex (——i); k,=2Z,ex (——‘); Z,=2Z,(H"
1 1 €Xp T 2 2 €Xp T 1 2 )

From the literature data the following values for the activation energy temperature
T,, the second-order frequency factor Z, and the second-order rate constant k,
{at 25°C) are obtained:

T, Z; k3

x) ( mol~* sec™ %) (I mol~* sec™ %)
Long and Pritchard!2—!'4 9370 1.99x 1012 447x10-2
Furusawa et al.!3 9060 3.30x 10! 2.10x 102
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Fig. 2. The ca'orimeter assembly.



2.2 The reaction calorimeter

The reaction calorimeter (Fig. 2) used for the present measurements is a
modified version of the apparatus described by Pritchard and Skinner3. The calori-
meter consists of a 1.5-1 dewar vessel A, provided with perspex baffles, a thermocoax
heating coil for calibration purposes, a pH-electrode and a perforated perspex cover B.
The dewar is immersed in a thermostatic bath, the temperature (7.) of which can be
kept constant within 0.01 K.

The dewar is partially filled with an aqueous solution of methyloxirane, while a
solution of sulfuric acid is contained in compartment C of a cylindrical tube and
enclosed by two teflon pistons D. The pistons are kept in place by a piston-rod, which
is firmly attached to the perspex cover, while wall E of the tube can be moved up and
down. By lifting this wall, the acid solution rapidly flows into the methyloxirane
solution; further mixing is achieved by means of a flat-blade turbo-stirter F
(1500 rpm).

The temperature of the reacting mixture is recorded digitally at equidistant
times by means of a Hewlett-Packard quartz-thermometer T, (calibrated within
0.001 K at the Netherlands Service of Metrology, The Hague) with an HP-2580-D
sensor. This instrument determines the time-averaged temperature of the reaction
mixture in each of the successive time intervals. The accuracy of the temperature
measurements depends on the length of the infervals selected for the reaction system
under consideration; it may vary from 0.01 K (for intervals of 0.1 sec) to 0.0001 K
(for intervals of 10 sec). Most measurements have been conducted with the 0.001 mode.
Temperature sensors T, and T; are diodes, developed in our institute, which serve to
check the temperature difference between the separated solutions before starting the
reaction; the accuracy of these sensors is of the order of 0.01 K.

The calculation of the kinetic constants T, and Z, from relation (42) is based on
the assumption that the chemical reaction is the only heat source or sink. However,
a more realistic heat balance for the reaction calorimeter sketched in Fig. 2 should
also involve the production of heat by stirring and the exchange of heat between the
calorimeter and its surroundings:

c,‘:l—f = QU+ W,—hA(T-T) Y

The magnitude of the last two terms in eqn (7) has been estimated from the variation
of T with ¢ in non-reacting systems. The heat balance then reduces to

dT W, hA
it L B ®
dt <, <

and the quantities W./c, and hA4/c, can thus be obtained from the linear relation
between d7/dr and T— T .. The average values from 18 measurements were found to be

W,jc, =(4.3+£0.5)x107* K sec™’
hAfc,=(1.7+0.3)x 10" ° sec™’

®
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Since the average rate of temperature rise due to chemical reaction is of th&
order of 0.03 K sec™!, we conclude that the *non-adiabatic” terms in eqn (7}
represent relatively smail effects. In the final part of the T, r curve, however, they may
become of importance because of the decreasing reaction rate. The ultimate effect OE
these terms on the values obtained for T, and Z, wiil be illustrated in Section 3 bf
means of computer calculations simulating actual experiments.

"'(;

2.3 Numerical estimation of temperature derivatives

The calculation of 7, and Z, via eyn (4a) and of W /c, and hd/c, via eqn (8
requires accurate values for d7/ds as a function 7. For the present purpose the-
classical methods for the numerical calculation of derivatives (Newton, Snrhng”’)z
are not particularly suitable. With these methods, even minor uncertainties in the;
measured 7, ¢ relation may give rise to unacceptably large errors in the calculated
d7/dz values!7: in fact, a loss of two or three significant figures is not unusual. E

We therefore preferred to use the so-called method of splines'®-'?, which i€
based on the following procedure. Let us consider a series of successive temperaturesf
Ty, Tz, Ts, ---, T, measured at (equidistant) times 7,, ,, 3, ..., ,. Within each of:
the successive intervals we now assume that the reactor temperature varies as a function:
of time according to

WO

T(f) =ap+a t+at®+azt’ (102)
with
2
(;—T=a,+”azt+3a;, and ‘:f=2a2+6a3z (10b)
t 1

For each of the time intervals the coefficients in eqn (10a) are determined by the
conditions that function 7(¢) as well as its first and second derivatives must be
continuous at the transition of successive intervals. By means of a recursive procedure
one then obtains a smoothly varying function, which covers the entire temperature
range from T, to T, and providas accurate values for the first and second derivatives
at any point of the T, 7 curve.

Reinsch?® applied the method of splines to input data subject to random errors.
The algorithm developed by this author is used in our present calculations and results
in a narrow band (rather than a single curve) for d7/ds as a function of 7. Starting
from input data with a relative error of about 10~ 3 (and corrected for the relatively
slow response and the slight non-linearity of the quartz temperature sensor), the
accuracy of the derivatives is found to be about 10 *. Tke calculations were carried
out on the CDC-cvber-73-28 digital computer at SARA (Stichting Academisch
Rekencentrum Amsterdam), using an Algol-40 programme.

3 ADIABATIC TREATMENT OF NON-ADIABATIC DATA

In Section 2.2 we observed that the reaction calorimeter used for our measure-
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ments is not a perfectly adiabatic system. The czalculation of T, and Z,, on the other
hand, is based on the validity of eqn (4a), in which terms like W, and 24 (7T— T_) have
not been taken into consideration. We must therefore investigate as tc how far the
values of the quantities T, and Z, are affected by the use of essentially non-adiabatic
data in conjunction with a strictly adiabatic model. To this end we assign realistic
values to the parameters in the coupled differential equations

dT Qde W, de

—=———+-—’—h—A(T—Tc) and —=—Zlcexp(—£) (11)
dt T

dz c, dt cp cp

which represent the behaviour of the reaction calorimeter described in Section 2.2 for
an irreversible first-order reaction. These non-linear equations are then integrated
numericaliy with the aid of a standard Runge-Kutta programme?!. The 7, ¢ relation
obtained in this way can be subjected to random noise and used to simulate a set of
experimental data.

From these non-adiabatic data we now recalculate the kinetic constants T, and
Z, according to the methods outlined in the preceding sections, which implies the
applicability of “adiabatic™ egn (4a). For “experimental™ data based on the para-
meter values:

T, =9.100x10°* K Qfc, =1.833x10" kg K mol™*

Z, =1.650x10*! sec™! W.fc, =4.300x107° K sec™* (12a)

hAfc, = 5.000x 1077 sec™!
we find from adiabatic fits at two different initial concentrations:

T, =278K T, =278 K
co =1.0moll™ ! ce =2.0mol 1!
(12b)
T, =893x10°K T, =9.17x10° K
Z, =0.92x10"! sec™? Z, =2.22%x10" sec™!

An analysis of these results indicates that the discrepancy between the
“adiabatic™ values in (12b) mainly originates from the difference in reaction time. At
the lower initial concentration it takes much more time to attain essentially complete
conversion than at the higher initial concentration. Since the relative importance of
the two smaller terms in egn (11) varies in the course of the reaction, it is clear that
the combined effect of these terms on 7, and Z,; will depend on the total length of the
reaction time.

This difficulty might be overcome by constructing a reaction calorimeter in
which the rate of heat production by stirring is compensated continuously by the rate
of heat removal due to heat transfer to a cooling medium of variable temperature:

W,—hA(T—-T)=0 or TH)-T.(t)= ::; = constant 13)
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A reaction caiornimeter designed to operate with a constant temperature difference
between the reacting mixture and the cooling medium is now being tested. The results
obtained with this quasi-adiabatic apparatus will be reported in a forthcoming
publication.

It should be noted, however, that the values of T, in (12b) differ from the correct
value in (12a) by less than 2%. With the presently available equipment and techniques
for data processing, the adiabatic treatment of non-adiabatic data thus leads to the
same degree of accuracy as obtained with the conventional isothermal methods.

4 NON-LINEAR REGRESSION PROCEDURE

The tremendous effect of the 7, values on the shape of the modified Arrhenius
plot made it desirable to investigate the applicability of more sophisticated regression
methods, which provide reliable values for 7T, and Z, as well as for 7. One such
method is based on the logarithmic form of the differential eqn (2), viz.

dT T,

In—=lZ +nln(T,-T)—2 14
7 nln{ ) T e
or
y=A+nIn(B—x,)—Cx, (152a)
where
y -_-lnd_T A:InZ,,:InZ+(n-—1)In£E
dr Q
1000 T,
Xy =— =—
T 1000

According to the least squares method, the most appropriate values of the
paramecters A, B and C must satisfy the condition

f(A,B,C)=Z{y—A—nln (B—x,)+Cx,}* = minimal (16)

resalting in the normal equations

2y—pA—nEZin(B—x,)+CEZx,=0 (i7a)
¥ Azl asBBox) s X (17b)
B—x, B—x, B—x, B—x,

Tx,y—AZx.—nZx, In(@—x,)+CEZx3=0 (17¢)

where the summation is carried out over the number of observations (experimental
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points) p. This system of three equations with three unknowns (viz. A, B and C) may
be solved via a three-dimensional Newton-Raphson iteration procedure, which
requires adequate starting values for the parameters in Z,, 7, and 7. Since suffi-
ciently accurate starting values for In Z, and 7, may not be availabie, it seems
reasonable to take advantage of the fact that the normal equations are linear in A and

C. Thus, from (17a) and (17c), the quantities A and C can be expressed as functions
of B:

(18a)
C=c+b,ZIn(B-—x,)—b;Zx, In (B—x,)
where
2 = EX)CEx,9) —EXE)EY) o = PEXy—(x,) (Ey)
Ex))*~pEx; (Ex)?~pEx}
(18b)
nZx3 nXx, np
e smmeos SR Sl s £ b=
(Exz) —pZx; (Ex2)"—pEx; Ex2)" —pEx3

For a given set of experimental 7, ¢ values (and calculated d7/d¢, T values) the
quantities a, c, b, , b, and b, are constants, which can be obtained from the measured
temperature-time relation. On substituting (18a) in (17b) we find:

f(B)___z____._.,,zEl_(B___x_l)_az +ex—X2
B—xl B—xl B—xl B“xl
—b‘(z 1 )Zln(B—x1)+b2(Z X2 )Zln(B—x1)+ (19)
B—x, —Xy

)sz In(B—x,)=0

*2

+ bz(Z 1 )zxz ln(B-—x,)—b_,,(E
B—x,

The problem has now been reduced to a single non-linear equation in B, which
can be solved by means of a one-dimensional Newton—Raphson procedure:

Bl' = Bi-l +6BI with i= 1, 2, 3, ......
and

f(Bi) ~ f(Bi— l)+f’(Bi'~ l) - EB‘ P— 0 > where 5B‘ —_ EIM

In order to obtain rapid convergence of successive 6B values, an acceptable
starting value (B,) should be available. Since 7, is the limiting reaction temperature
for t— o0, the T, value estimated by direct extrapolation of the experimental 7, ¢ curve
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may not be sufficiently accurate. In that case a reliable starting value for B, can ba
obtained in the following way.

At reaction temperatures in the vicinity of T, the reaction rate depends almost
entirely on the vanishing reactant concentration, whereas the temperature dependence
is no longer of importance. Sufficiently close to 7, we may therefore replace eqn (2)
by the simpler expression

ar ~Z (To—T) exp /-—- —Ti) =k (T,—-T) for T~T, (20a)
dr \ T,

where
k,=2Z,exp (— %) (20b)

is the limiting value of rate constant &k, for 7— 7_,. From eqn (20a) we observe that
the final part of the d7/ds, T curve can be represented by a straight line for n=1
(first-order reaction) and by a parabola for n = 2 (second-order reaction). An example
of the applicability of approximation (20a) is shown in Fig. 3 derived from the final
part of a 7, ¢ curve for the adiabatic hydrolysis of methyloxirane in acid solution.

3
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Fig. 3. The approximation of T.. by eqn (202); the fitted value for T is 293.118 K, while the regres-
sion procedure in eqn (19) gives 293.120 K.

RESULTS AND DISCUSSION

With the reaction calorimeter described in Section 2.2 a number of experiments
have been conducted in which the hydrolysis of methyoxirane (Section 2.1) served as
the model reaction. The measured T, ¢ relations were converted into d7/d¢, T relations
by means of the methods mentioned in Section 2.3 and the latter data were then
subjected to the regression procedure outlined in Section 4. From two sets of 15
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experiments with an initial temperature of about 278 K, a pH of about 1.0 and initial
reactant concentrations of about 1.0 and 2.0 mol1™ !, respectively, the average
values of T, and Z, and of the second-order rate constant k, are found to be:

Co T, Zyx10-12 k3 (25°C)

(mol 1 1) X) d mol~!sec™ 1) d mol~sec™ 1)
set I 1.0 8926142 1.02+0.30 0.102£0.016
set 11 2.0 916737 1.56%0.40 0.069 £ 0.009

In view of the high reactant concentrations involved, the accuracy of the results
at one given initial concentration is quite satisfactory. As already noticed in Section 3,
however, the discrepancy between the values of 7, and Z, at different initial con-
centrations constitutes a serious limitation of the adiabatic treatment of non-adiabatic
data. This limitation becomes more severe if the final part of the T, 7 is completely
included in the set of experimental data.

A possible experimental solution of this problem has already been suggested in
Section 3. Meanwhile, we are also working on a mathematical treatment, which is
based on the complete differential eqns (11). Introducing acceptable starting values
for the parameters in (12a), one can integrate these equations numerically and
determine the sum of the squares of the differences between the experimental and the
calculated reaction temperatures at a given set of 7 values. By means of a suitable
iterative procedure, an improved set of parameter values is then obtained and with
these values one again integrates egns (11) and determines the sum of squares. This
procedure is continued until the sum of squares attains its minimum value. A com-
puter programme performing these calculations is presently being tested.
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NOMENCLATURE

heat-transfer surface area

concentration of key-reactant

initial concentration of key-reactant

average volumetric heat capacity

energy of activation

overall heat-transfer coefficient

pseudo reaction rate constant near 7, eqn (20b)
pseudo reaction rate constant, eqn (4a)

O TSN
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n reaction order

Q@  heat of reaction (positive for exothermic reactions)
R gas constant

4 time

T absolute temperature of reacting mixture

7, initial temperature of reacting mixture

7, activation-energy temperature, eqn (1)

7. ambient temperature

7., maximum adiabatic reaction temperature, eqn (3a)
U  reaction rate

W, heat of stirmng

Z  frequency factor, egn (1)

Z, modified frequency factor, eqn (3b)

o standard deviation
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